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Basic Radar Idea

Transmit

Radar Target

Reflection

Reception
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Radar Antennas

http://wikipedia.org/Radar.html
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Radar Parameters

The target is a distance d from the antenna

distance, d

The pulse travels a total distance of 2d at the speed of light c, which is
3× 108 m/s, or 300 m/µs.

The echo returns after a delay of

td =
2d

c

EE 179:Introduction to Analog and Digital Communications: Aut 20-21, Pauly 4



A delay of 1 µs corresponds to a distance of

d = ctd/2 = (300 m/µs)(1µs)/2 = 150 m

There is also a frequency shift (Doppler shift) that we’ll ignore for now, but
will come back to shortly.
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Simple Radar Waveform

A simple radar waveform is an envelope multiplied by a carrier.

TR
Carrier Freq

Radar Waveform

Envelope

We only need to consider the envelope of the signal to understand basic
radar signal processing.
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Range Ambiguity

In a simple experiment, we transmit a pulse, and wait for it to come back

Transmit

Receive

td

This tells us that there is a target at a distance d = c td/2.

Practically we want to repeat the measurement as rapidly as possible, to
track the target
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Transmit

Receive

TR

td td

We transmit a new pulse after we receive the previous return.

If we don’t wait long enough ...

Transmit

Receive

TR

td

td−TR

We think there is a target at c (td − TR)/2, which is much closer!
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The targets at c (td − TR)/2 and c td/2 are ambiguous, we can’t tell them
apart.

To be unambiguous, we need the roundtrip time 2d/c to be less than TR.
A given TR has a maximum usable range.

Ballistic Missile Early Warning Systems (BMEWS) Thule, Greenland.

https://en.wikipedia.org/wiki/Ballistic_Missile_Early_Warning_System
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Radar Display

Air traffic control radar gives a top-down 2D view of the airspace

Air Traffic Control Radar PPI Radar Display

Ambiguous

Range

Aircraft

Radar

Radar Echoes

• Radar sends a pulse out, and listens for echoes

• The received signal is written on the display at the same angle

• The radar rotates, and sends out another pulse
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Pulse Detection

How do we detect when the pulse has returned? It seems simple if the SNR
is high. If we transmit a pulse

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

Time, us

Am
pl

itu
de

We get a delayed version of the pulses at the receiver
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We could measure the time of arrival of the leading edge of the pulse, for
example.

In practice, the returned signal is much smaller than the transmitted signal,
and has been corrupted by noise,
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Here it is much harder to say where the reflected signal is!
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Matched Filters, and Correlation Receivers

Solution is to search for signals that look like the transmitted signal.

x(τ)

y(τ)

y(τ)

y(τ)

x(τ− t1)

x(τ− t2)

x(τ− t3)

c(t)
c(t) =

Z
x(τ− t)y(τ)dτ

t = td
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If x(t) is the transmit signal, and y(t) is the returned signal, then

c(t) =

∫ ∞
−∞

x(τ − t)y(τ)dτ

This is the cross-correlation of x and y, which is written as

(x ? y)(t) =

∫ ∞
−∞

x(τ − t)y(τ)dτ =

∫ ∞
−∞

x(τ)y(τ + t)dτ

To look for a reflected signal at time t,

• Shift the transmitted signal to time t,

• Multiply point by point with the received signal,

• Then integrate.

This is just like convolution, except you don’t reverse one of the signals.
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For the noiseless case before, we get

Input
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Received Signal
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Cross Correlation
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For the high-noise case,

Input
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Received Signal
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Cross correlation properties

• Better defined peak, easier to identify time

• Broader peak, twice the duration of the transmit pulse

• Good suppression of noise, optimal under reasonable assumptions

If the received signal at time td is really y(τ) = x(τ − td), then the cross
correlation at td is

c(td) =

∫
x(τ − td)y(τ)dτ =

∫
x(τ − td)x(τ − td)dτ =

∫
x2(τ)dτ = Ex

which is the energy in the transmitted pulse.
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Transmit Pulses

We would like the transmitted pulse to have a large Ex, so that we can
detect signals far away.

Peak RF amplitude is limited, so we have to make the pulses longer to
increase Ex.

Pulse

Cross
Correlation

Short Long

Doubling the pulse length doubles Ex, but makes it harder to accurately
identify the return time.
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Pulse Compression

Can we have the large Ex of a long pulse, with the temporal resolution of
a short pulses?

Remarkably, yes!

What we want are pulses whose cross-correlation with themselves are small,
except right at the origin.

a(t) =
Z ∞

−∞
x(τ− t)x(τ)dτ

t0

This is the autocorrelation of x(t).

Finding pulses with these properties has been a major research effort in
radar.
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One example are pulses based on Barker codes.

A length 5 Barker code is

t

It is described by the amplitudes of the subpulses, in this case
(+1,+1,+1,−1,+1).

The remarkable thing about Barker codes, is that the autocorrelation on an
N sample code is either ±1 or 0 everywhere, except at t = 0, when it is N!
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The positive time samples can be found similarly.

The result is

0−5 5

1

5

t

This has the energy of a long rectangular pulse, with the temporal resolution
of a high-amplitude short rectangular pulse.
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This is called pulse compression, because the autocorrellation is effectively
compressed compared to the transmit pulse.

Surprisingly, Barker codes are known for only a few N!

N Code
2 (+1,−1)
3 (+1,+1,−1)
4 (+1,−1,+1,+1)
5 (+1,+1,+1,−1,+1)
7 (+1,+1,+1,−1,−1,+1,−1)

11 (+1,+1,+1,−1,−1,−1,+1,−1,−1,+1,−1)
13 (+1,+1,+1,+1,+1,−1,−1,+1,+1,−1,+1,−1,+1)

Besides radar and pulse compression, Barker codes are also used in
communication for spread spectrum modulation.
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Basic Doppler Radar Idea

Transmit

Radar

Target

Reflection

Velocity, v

frequency, ω

frequency, ω+Δω

Velocity, v

The target is moving.

The reflected RF pulse is shifted in frequency.
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Doppler Shift

distance, d

Velocity, v

The target is a distance d from the antenna, moving at a velocity v.

The phase of the received signal is the total distance divided by the
wavelength λ.

φ = −2π
2d

λ

The negative sign is due to the fact that the received signal is delayed in
time.
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The frequency of the signal is

ωd =
d

dt
φ =

d

dt

(
−2π

2d

λ

)
= −2π

2v

λ

The wavelength λ = c/(ω/2π) = 2πc/ωc, where c is the speed of light, so

ωd = −2π
2v

2πc/ωc
= −2v

c
ωc

or, dividing both sides by 2π, and using f = ω/2π,

fd = −2v

c
fc
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For an airplane traveling 300 m/s (just below the speed of sound, 330 m/s),
and a radar frequency of fc = 1GHz, this gives

fd = −(2)(3× 102 m/s)

3× 108 m/s
(1× 109 Hz) = −2× 103 Hz = −2 kHz.

You also see a similar frequency shift in communications.

The shift is half of the radar doppler shift, since there is only the one-way
path.

This shift is noticeable when you are decoding packets. The frequency will
drift depending on the changing distance between you and the airplane.

It is even more of an issue with low earth orbit satellites, due to their very
high speeds.
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Pulsed Doppler

A single, short pulse gives good range resolution, but poor frequency
(velocity) resolution.

A single, long pulse gives good frequency (velocity) resolution, but poor
range resolution.

How do we get both, to localized the velocity in a particular vessel, or heart
valve?

Many different solutions.

A common solution in radar is Pulsed Doppler, shown on the next page.

EE 179:Introduction to Analog and Digital Communications: Aut 20-21, Pauly 28



Range Resolution

Velocity Resolution

Velocity and Range Resolution

ωωc−ωc

ωωc−ωc

ωωc−ωc

RF Pulse Spectrum

TPRF

Pulsed Doppler waveform
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A short pulse is repeated many times, at an spacing TPRF .

The round-trip time must be less than this

td =
2d

c
< TPRF

Otherwise a closer voxel will also be returning signal at the same time, and
the signal is ambiguous.

After quadrature demodulation, the baseband spectrum looks like

ωωPRF −ωPRFωd

EE 179:Introduction to Analog and Digital Communications: Aut 20-21, Pauly 30



The spacing between the sublobes is fPRF = 1/TPRF , and this must be
greater than the Doppler shift

fd =
2v

c
fc < fPRF

or the velocity is ambiguous. This is the same as sampling.

Often, fPRF is not high enough due to the round-trip time required to
reach a specific depth, d, and aliasing occurs.
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Cell Telephone

Base Station Handsets

Base station talks to all of the handsets in the cell.

Simple solution, each link has a frequency. However, there are a limited
number of frequencies.

We would like to have multiple connections for each frequency. How do we
do this?

EE 179:Introduction to Analog and Digital Communications: Aut 20-21, Pauly 32



Sharing a Channel

If all of the handsets try to use the same frequency, the signals superimpose,
and we can’t sort them out.

C1

C2

C3

CR

Simultaneous
Conversations

Received
 Signal

Two methods (out of many) for sharing the channel are

• Time division multiplexing (TDMA)

• Code division multiplexing (CDMA)
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Time Division Multiplexing

Each transmit bit is divided into several subintervals.

Each handset only talks during its allotted times.

C1

C2

C3

CR

Simultaneous
Conversations

Received
 Signal

Here there are four time slots. C1 only transmits during the first time slot,
C2 the second time slot, etc.
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There are a limited number of time slots, limiting the number of
simultaneous users. We could add one more user, but the second would fail.

The received signal bandwidth is increased by a factor of four in this case
(the spectrum is spread by that factor).

Higher data rates can be obtained by allocating one user several time slots.

You can transmit and receive on the same frequency by allocating different
time slots to each. This is done in some of the Chinese cell phone systems.
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Identifying Individual Channels

What we’d like is a ”tag” that allows each channel to be selected, while
ignoring all of the others.

If φ1(t) is the tag, or code for one channel, we send a sequence of
(−φ1(t),+φ1(t),+φ1(t), · · ·) to represent the sequence (−1,+1,+1, · · ·)

C1

C2

C3

CR

Simultaneous
Conversations

Received
 Signal

φ1

−φ2

φ1−φ2+φ3

φ3

−φ1 −φ1−φ1 −φ1 −φ1φ1φ1 φ1
φ1 =

φ2 =

φ3 =
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The received signal at one interval contains these superimposed codes from
each channel, weighted by channel gain, transmit power, etc

y(t+ kT ) =
∑
n

Dn,kφn(t)

Dn,k is the information from the nth channel at the kth sample.

How do we choose the code waveforms to make it easy to find the signal of
interest, and ignore all the others?
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Orthogonal Codes

What we want is to choose the φn(t) so that we can extract Dn,k (the
information we are trying to receive) by a simple matched filter,

D̃n,k =
1

T

∫ T

0

φn(t)y(t+ kT )dt

=
1

T

∫ T

0

φn(t)
∑
m

Dm,kφm(t)dt

=
∑
m

Dm,k
1

T

∫ T

0

φn(t)φm(t)dt

If we choose
1

T

∫ T

0

φn(t)φm(t)dt =
{
1 if n=m
0 otherwise
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Then we only get the term we get is the term we want,

D̃n,k = Dn,k

and we ignore all of the other channels!

We want to choose φn(t) to be orthogonal signals.

There are many possible choices. For example

φn(t) = cos(nω0t)

where ω0 = 2π
T . The Dn,k are then the coefficients of the cosine Fourier

series of the signal. This effectively shifts each channel to a different
frequency! This is similar to FSK, and often uses the same waveforms.

However, what we really want is something very easy to compute ...
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Hadamard Waveforms

Hadamard waveforms are an orthogonal set made up of only ±1’s.

The first couple of Hadamard signals are (in sequency order):

1
−1 T t
1

−1 T t

1
−1 T t
1

−1 T t
1

−1 T t
1

−1 T t

φ1(t)

φ0(t)

φ2(t)

φ3(t)

φ4(t)

φ5(t)
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The signs of the Hadamard signals can be generated (in a different order)
by defining

H2 =

(
1 1
1 −1

)
and then defining

H4 =

(
H2 H2

H2 −H2

)
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


and similarly for H8, H16, ...

It is easy to show that the columns of HN are orthogonal, and hence that
the Hadamard functions with these signs are orthogonal (try this!).

We can tag each channel by assigning it a Hadamard waveform φn(t).

We can continue to add users by adding new codes (at some point we run
out of bandwidth, though).

EE 179:Introduction to Analog and Digital Communications: Aut 20-21, Pauly 41



Synchronous Detection

Hadamard decoding fails if it is not synchronized

y(t)

y(t− T
2
)

φ2−φ2 −φ1 −φ2 φ1 φ2 −φ2 φ2

φ1 φ1 φ1 φ1−φ1 −φ1 −φ1 −φ1 −φ1
φ1 =

φ2 =

Without a delay, the signal decodes to channel 1.

With a delay, the decoding is completely different.
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The Hadamard codes only work if all of the signals are synchronized.

Fine when the basestation is talking to the handsets (the downlink). The
basestation can synchronize all the signals before transmitting.

Base Station Handsets

Downlink
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Does not work well when the handsets are talking to the basestation (the
uplink).

Each channel has it’s own delay:

Base Station Handsets

Uplink

Even if we could synchronize to one channel, we would be decoding the
other channels with delays, and these interfere with our channel.

EE 179:Introduction to Analog and Digital Communications: Aut 20-21, Pauly 44



Uplink Codes

Ideally, we would like a code that

• Is orthogonal, so that we can isolate a particular channel

• Has a sharp autocorrelation, so that we can accurately identify the delay
of a channel, and decode it properly.

Unfortunately, Hadamard codes have broad autocorrelations:

! =

! =

Not good for estimating delays!
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We would like autocorrelations like the Barker codes,

! =

However, there are no orthogonal sets of signals with the autocorrelation
properties of Barker codes.
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Pseudo-Noise Codes

Pseudo-noise codes approximate the ideal sharp auto-correlation, orthogonal
codes. These are deterministic codes that approximate the characteristics
of a noise sequence.

They are ±1 with probability of 1/2, and have the run lengths of −1’s and
1’s of a random sequence.

! =

At zero shift, the product of the two is a contant ”1”, and the autocorrelation
is ”N”. At other shifts, the product of each interval is just is likely to be
+1 as −1, so the autocorrelation is small.
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These are pseudo random noise (PRN) codes. One common example are
Gold codes.

They are not completely orthogonal, although

1

T

∫ T

0

φn(t)φk(t)dt

should be small (again, ±1 equally likely, so the integral will be small).

Other channels appear as noise-like interference.

If we correlate the received signal with φn(t) we get a large signal for the
nth channel, with a peak at the delay for the nth channel.

Adding users looks likes like an increased background noise level, which
softly degrades performance.
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y(t)

(φ1 ! y)(t)

(φ2 ! y)(t)

Each channel properly decoded, with its own delay.

Other channel just adds noise.
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Spread Spectrum Communications

Orthogonal codes allow users to share a channel.

Hadamard codes work well when the channels can be synchronized, such as
when the basestation is talking to multiple handsets.

For unsynchronized channels, we want both orthogonality, and good
autocorrelations. Psuedo-random codes are a good approximation.

We can continue to add users by handing out more codes, with a soft
degradation of performance. Other users look like an increased noise level.

For GPS, each satellite has its own 1023-bit Gold code, and all transmit on
the same frequency.

There are also other approaches to spread-spectrum communications, such
as frequency hopping. This used for robustness (resistance to jamming) and
security.
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